



Origine du lithium

- Le lithium a été un des 3 seuls éléments présents dès le Big Bang. (nucléosynthèse primordiale)
 - o ¹H et ⁴He: 99%
 - o ²H et ³He: 1%
 - 7 Li: 10^{-10} % \rightarrow présent seulement à l'état de trace
- Les deux isotopes ⁶Li et ⁷Li stables du Lithium sont majoritairement présents dans l'univers grâce aux réactions de spallation, qui viennent casser les éléments Carbone, Azote et Oxygène.
- La teneur en lithium (Li) de l'écorce terrestre est de 20 ppm (20 g/t),
 celle des océans est de 0,18 g/m3
- Découvert en 1807 par Johann August Arfwedson, chimiste suédois en étudiant des minéraux de pétalite (LiAlSi₄O₁₀)

Pétalite (wikipedia)

Propriétés physico-chimiques

- Lithium
- Métal le plus léger de la famille des alcalins
- **Ductile**, grisâtre
- Caractéristiques **électrochimiques** intéressantes → batteries
- Très réactif avec l'eau et l'air à l'état pur (s'oxyde) : n'existe pas sous cette forme dans la nature

Pegmatites

Formes naturelles

Principale source de lithium rocheux, les pegmatites sont composées de minéraux contenant du lithium

Pétalite LiAISi₄O₁₀

Lépidolite $K(Li,AI)_3(Si,AI)_4O_{10}(F,OH)_2$.

Déserts de sel, lacs asséchés

Salar d'Atacama, Chili ©Tom Hegen

Chiffres clés

22 000 000 t 86 000 000 t

Ressources mondiales

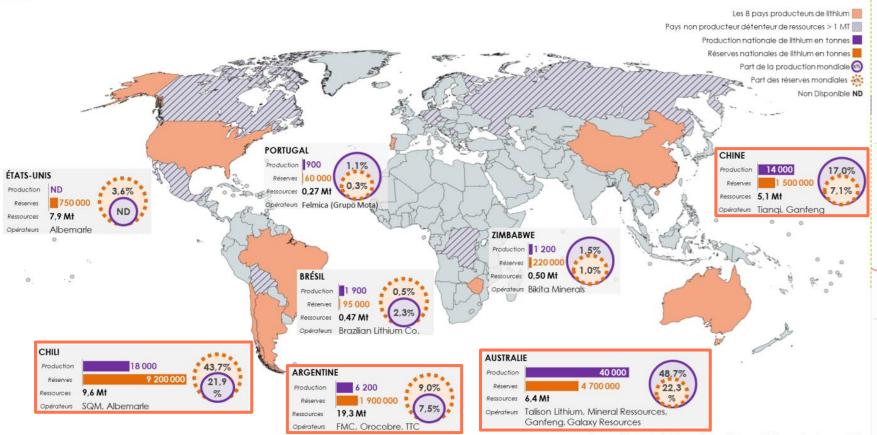
Des ressources situées en **Bolivie, Chili, Argentine** "Le triangle du Lithium"

100 000 t

Réserves mondiales

Production annuelle en équivalent Li

De la production est Australienne, suivi par le Chili (26%) en 2021


55 %

Source : USGS

6

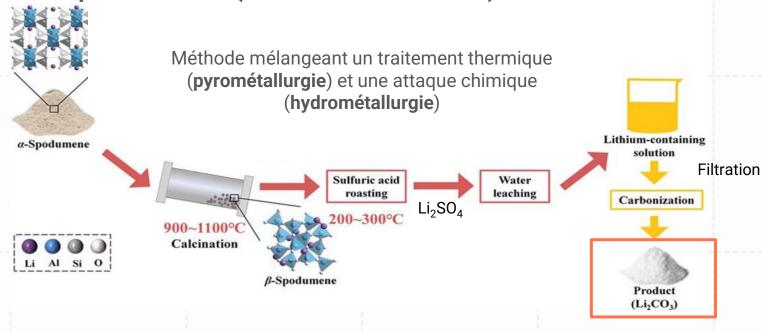
PRODUCTION ET RÉSERVES MONDIALES DE LITHIUM EN 2020 (t)

Source : U.S. Geological Survey, Mineral Commodity Summaries, January 2021 Carte créée par IFP Énergies Nouvelles avec Mapchart.net

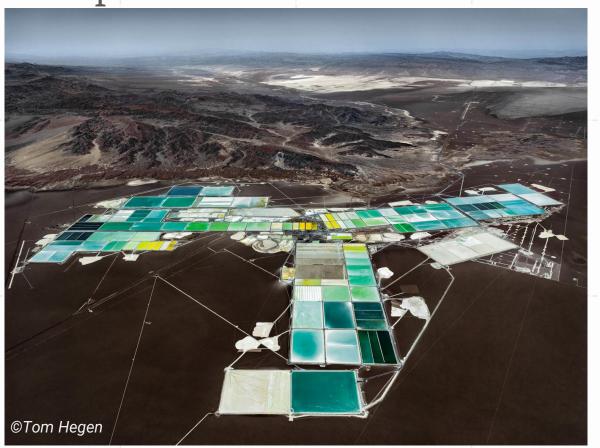
Exploitation des roches

- Mode d'extraction typiquement australien (aussi en Chine, Portugal, Zimbabwe)
- Teneur en Li₂O pouvant atteindre 4%
- Plus court que l'exploitation des saumures mais plus coûteux en raison d'une forte demande en énergie tout au long du processus

Pré-traitement :

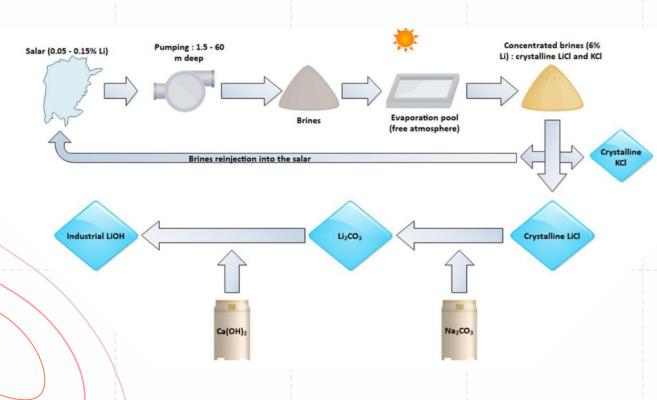

Extraction > Concassage > Séparation > Concentration à 6% en Li₂O ("SC6")

→ Puis raffinage du concentré pour produire du carbonate (Li₂CO₃) ou de l'hydroxyde de lithium (LiOH), historiquement en Chine



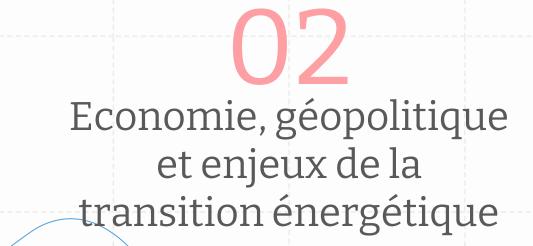
Exploitation des roches

Traitement par voie acide (méthode traditionnelle)

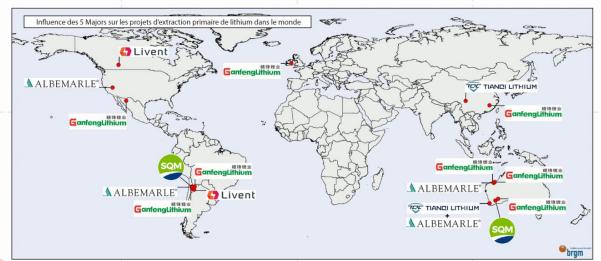

Forte consommation d'énergie à chaque étape du processus

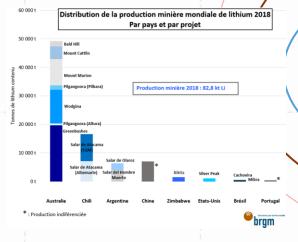
- Principalement exploitées en Amérique du Sud: Les Salars
- Teneur en lithium sous ces anciens lacs salés: 0,05% à 0,16%
- Production annuelle venant des salars: 48 000 tonnes
- Le Salar d'Uyuni en Bolivie est la plus grande accumulation de lithium connue 10 582 km²: 9 millions de tonnes. Mais une concentration élevée en Mg ne permet pas pour l'instant son exploitation à grande échelle.

Salar d'Uyuni



- 2 sources d'eau utilisées dans ce procédé:
 - L'eau d'évaporation: jusqu'à 2000 m3/t de lithium
 - Issue des saumures, cette eau chargée en sel est impropre à la consommation. Son pompage massif peut perturber l'équilibre hydrogéologique régional
 - L'eau de traitement: 41m³/t de lithium (peu de sources)
 - 2 millions de m³ par an pour les salars
- Enjeux pour les communautés locales dans des régions arides (la région des mines dans l'Atacama a perdu 65% de sa ressource en eau)





Culture de Quinoa

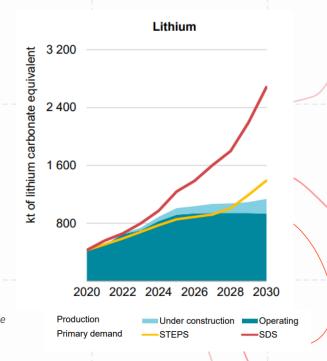
Un marché concentré économiquement et géographiquement

- 55% des réserves actuelles en Australie
- 2 entreprises chinoises regroupent 26% de la production mondiale, suivies des Etats-Unis et du Chili.
 - 80% du lithium extrait en Australie est traité en chine
 - 61% des capacités de production des batteries lithium ion en Chine

Ganfeng	17 %	Tiangi	9 %
Carrieria	17 70	Hanqi	7 70
Albemarle	14 %	Livent	4 %
SQM	13 %		

Une demande exponentielle (échelle mondiale)

Lithium

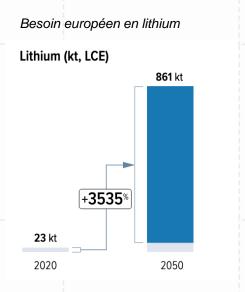

(en tonnes de métal contenu dans la production minière)

2016 2017 2018 2019 2020 2021

Production mondiale

	40 100	68 500	95 000	86 000	82 500	100 000	
Argentine	5 800	5 700	6 400	6 300	5 900	6 200	
Australie	14 000	40 000	58 800	45 000	39 700	55 000	
Brésil	200	200	300	2 400	1 420	1 500	
Chili	14 300	14 200	17 000	19 300	21 500	26 000	
Chine	2 300	6 800	7 100	10 800	13 300	14 000	
États-Unis	2 100	1 420					
Portugal	400	800	800	900	348	900	
Zimbabwe	1 000	800	1 600	1 200	417	1 200	

Source: "Métaux "électrique": un avenir radieux pour les producteurs, un impératif de sécurisation pour les industriels", Cyclope, 2022, 9-20.

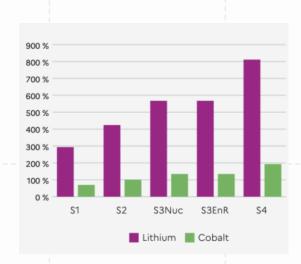


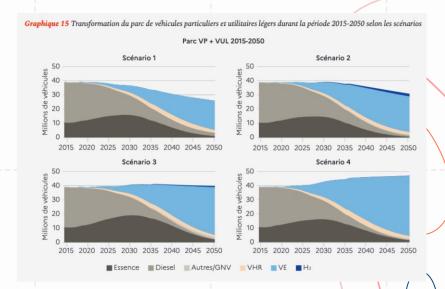
Source : Production minière et demande en lithium, The role of critical minerals in Clean Energy transitions, IEA, 2021.

Une demande exponentielle (échelle européenne)

Tmhnm dtqnodmmd hmsdqchbshnm udmsd cd ughbtkdr sgdqlhptdr mdter dm 1/24

Autosuffisance de l'Europe pour ses besoins en matières premières primaires et métaux primaires, scénario de base 2030


Top transition uses (all battery metals):

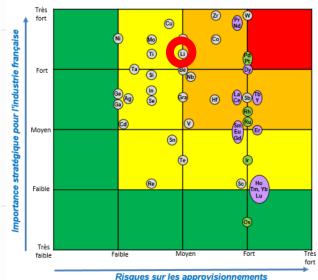


Battery storage

Des besoins en lithium différents selon les trajectoires de décarbonation (échelle française)

- Dm khdm `udb kdr rbm`qhnr cd sq`mrhshnm cd k@CDL D+ oktr kd rbm`qhn sdmc udqr k` rnaqhs+Inhmr kd adrnhm dm l`sqh`tw rdq` kdu-
- K` bnmrnll`shnm ct khsghtl dwoknrd c`mr sntr kdr rbm`qhnr+ltkshokhd o`q 2 ontq kd rbm`qhn 0 ds o`q 7 ontq kd rbm`qhn 3-

Transformation du parc de véhicules particuliers et utilitaires légers durant la période, 2015-2050, ADEME, 2022.


Transition énergétique: vers de nouvelles dépendances?

• Métal critique : métal aux propriétés remarquables pouvant entraîner des impacts industriels économiques négatifs importants liés à approvisionnement difficile, sujet à des aléas. (définition du BRGM).

Criticité du lithium : moyenne à forte

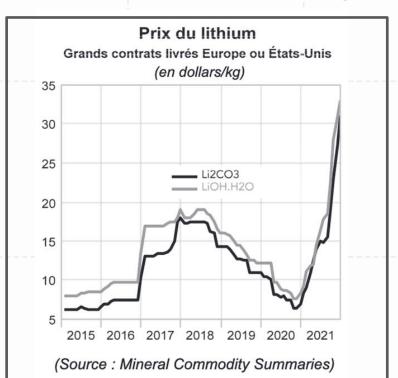
- Risques de rupture d'approvisionnement moyen : risques géopolitiques maîtrisés (Australie et Chili comme acteurs majeurs), sous-capacités industrielles ...
- Importance stratégique pour l'industrie française forte : forte augmentation de la demande en batteries.

ÉVALUATION DE LA CRITICITÉ DES SUBSTANCES OU GROUPES DE SUBSTANCES ÉTUDIÉS PAR LE BRGM Positionnements actualisés à fin 2020 ("Fiches de criticité")

L SQUDU CU DQUSUDUS ls`tw

Source : La matrice de criticité mise à jour à fin 2020 est disponible sur Minéralinfo, BRGM, 2020.

Un risque d'épuisement physique limité mais des ruptures d'approvisionnements à anticiper

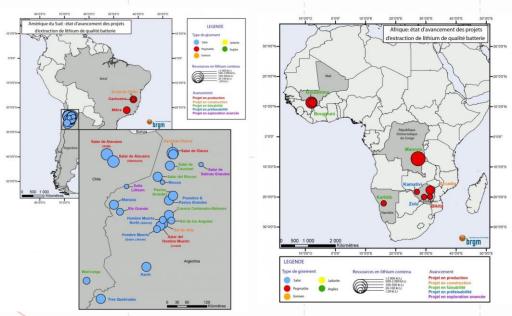

- Concentration géographique et mainmise sur la production par 5 « majors » du secteur.
- Croissance de la demande : fois 40 selon l'IEA d'ici 2040.
- Temporalité de développement des projets miniers
- Volatilité des prix
- Risque de qualité de la ressource déclinante
- Préoccupation environnementale et sociale croissante
- Augmentation de l'exposition aux risques climatiques

Marché contraint et volatilité des prix : freins au développement de nouveaux projets ?

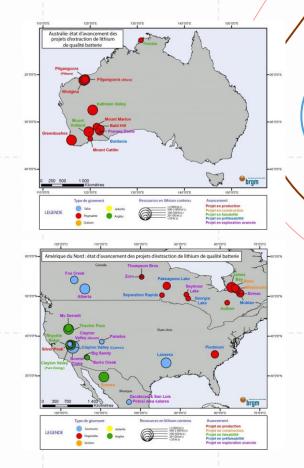
- Les entreprises nouvellement entrantes sur le marché sont plus vulnérables à une baisse des prix du lithium qui pourrait freiner la rentabilité de certains projets
- Fly up depuis fin 2020 : prix anormalement élevés
- Près de 80 000 euros la tonne de carbonate de lithium en Chine (octobre 2022, source : Statista)

Diversification des exploitations

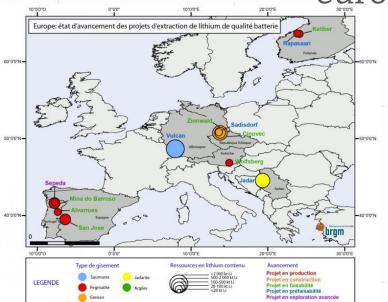
Capacités de production cumulées des Majors

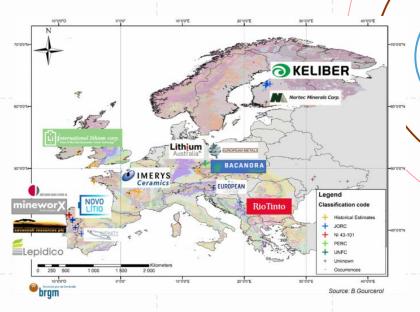

Con	npagnie	Opération	Capacité de production totale	Contrôle actionnarial de la compagnie	Equivalent Production Li théorique	Commentaire éventuel
		Salar de Atacama	8 266	100%	8 266	
A III	emarle	Greenbushes	35 000	49%	17 150	
AIL	Jemane	Wodgina	20 880	60%	12 528	
		Silver Peak	1 879	100%	1 879	
					39 823 t Li	
	SOM	Salar de Atacama	13 150	100%	13 150	
	JQIII	Mount Holland	8 804	50%	4 402	
					17 552 t Li	
		Salar del Hombre Muerto	4 854	100%	4 854	
<u>'</u>	Livent	Clearwater - Alberta E3 Metals Corp	ND	ND	ND	Faisabilité. Appui financier et technologique de Livent
					4 854 t Li	
	Tiongi	Greenbushes	35 000	51%	17 850	
	Tianqi Cuola		ND	100%	ND	
					17 850 t Li	
		Mount Marion	10 440	50%	5 220	En production
${\mathbb M}$		Cauchari-Olaroz	7 515	51%	3 832	Faisabilité
		Sonora	6 575	22,50%	1 479	Faisabilité
Z		Avalonia	ND	79%	ND	Faisabilité
_	anfeng	Mariana	1 879	86.297%	1 621	Faisabilité
		Ningdu Heyuan	3 288	100%	3 288	En production
		Pilgangoora (Pilbara Minerals)	9 187	9,5%	873	Equity ownership dans Pilbara Minerals : 9,5%
		Pilgangoora (Altura Mining)	6 125	ND	ND	Accord d'enlèvement (Offtake) Stage 1 : 9 kt LCE Stage 2 : 14 kt LCE
					15 046 t Li	
1	TOTAL		172 842 t Li		96 393 t Li	

Capacités de production cumulées des majors sur le marché du lithium Les entreprises diversifient leurs activités afin de rester dominantes dans un marché en forte évolution.

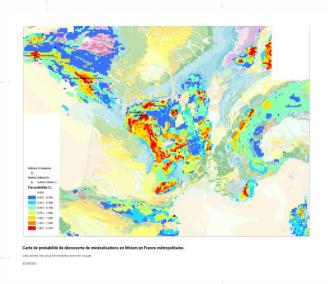

L'ouverture de nouvelles exploitations étant peu rentable sur le court-terme, leur stratégie principale est de prendre des participations dans des mines déjà exploitées. Par exemple:

- Tianqi détient 51% des parts de la mine la plus productive à Greenbushes, qui a produit 35 000 t de lithium contenu en 2021,
- Tianqi a acquis 23,77% des parts du groupe SQM qui exploite surtout les salars chiliens.
- Ganfeng détient des parts dans les exploitations australiennes et américaines


La course aux investissements



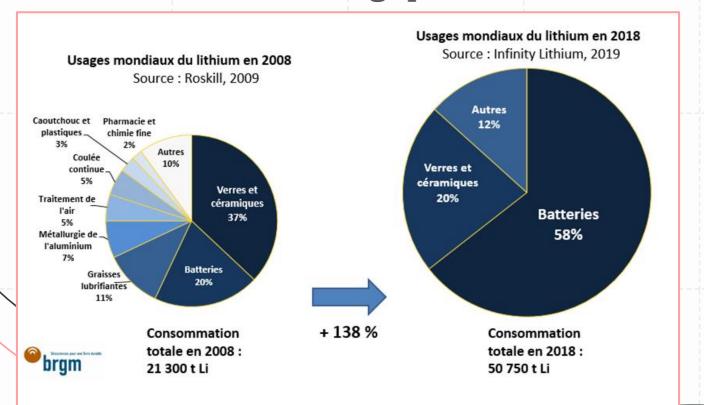
- Le triangle du lithium représente un potentiel important pour les majors, avec 53% des réserves mondiales estimées (salars notamment)
- En Afrique, 4 projets sont à l'étape de faisabilité, dont Manono au Congo qui représente plus de 2 millions de tonnes de lithium en réserve.
- En Australie, l'entreprise australienne Liontown Ressources a investi dans deux nouveaux projets. La plupart des gisements sont actuellement en production, détenus par les majors
- Des projets sont envisagés en Amérique du Nord, certains d'entre eux provenant de sources non-conventionnelles (Argiles). Les réserves sont estimées à 6,8 millions de tonnes de lithium contenu


Enjeux du développement d'une filière européenne

- Selon le BRGM, les réserves européennes ne représentent que 1% des réserves mondiales
- Néanmoins, de nouvelles exploitations sont envisagées pour réduire la dépendance aux majors du lithium.

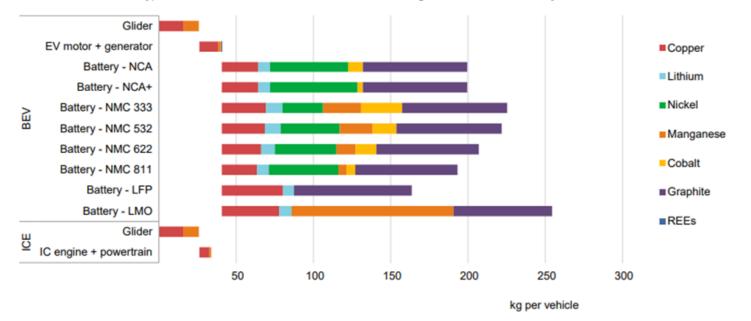
Entre souveraineté et enjeux environnementaux : la transition énergétique sur le territoire français

Source : Ressources françaises en lithium sous la forme de roches dures, BRGM, 2019.



Source : Le Monde, 2022.

- La France importe 76% de son hydroxyde de lithium des Pays-Bas, 64% de son carbonate de lithium d'Argentine. Le reste vient essentiellement des Etats-Unis et de Chine.
- L'entreprise minière Imerys projette d'ouvrir une mine de lithium dans l'Allier où se concentrent une partie des ressources françaises de lithium (estimées à 23 564t mesurées par le BRGM en 2019). Cela reste très faible par rapport au lithium importé.



Le recyclage du Lithium : enjeu environnemental et stratégique

EVs use around six times more minerals than conventional vehicles

IEA. All rights reserved.

Notes: For this figure, the EV motor is a permanent-magnet synchronous motor (neodymium iron boron [NdFeB]); the battery is 75 kilowatt hours (kWh) with graphite anodes.

Sources: Argonne National Laboratory (2020b, 2020a); Ballinger et al. (2019); Fishman et al. (2018b); Nordelöf et al. (2019); Watari et al. (2019).

ReLieVe eramet

Processus de recyclage du Lithium en boucle fermée

Collecte et démantèlement des batteries

Traitement des anodes et cathodes

Déchiquetage

6

Raffinage de la black mass par hydrométallurgie

Séchage pour extraction des solvants

Production de sels métalliques

Séparation des

membranes en plastique par système aéraulique

Tout procédés et tout acteurs compris : des capacités de recyclage en Europe estimées à 15000 tonnes/an > un objectif de 50000 t/an en 2027

Comparaison de différentes méthodes

Comparison of d	lifferent LiB re	cycling meth	ods Best	••••	• • • •	• • •	• •	Worst	
	Technology readiness	Complexity	Quality of recovered material	Quantity of recovered material	Waste generation	Energy usage	Capital cost	Production cost	
Pyrometallurgy	••••	••••	•	0.00	• •	•	•	••••	
Hydrometallurgy	• • • •			• • • •	• • •				
Direct recycling	• •	•	••	••••	• • • •			•	
	Presorting of batteries required	Cathode morphology preserved	Material suitable for direct re-use	Cobalt recovered	Nickel recovered	Copper recovered	Manganese recovered	Aluminium recovered	Lithium recovere
Pyrometallurgy	••••	No	No	••••	••••	••••		No	
Hydrometallurgy	• • • •	No	No	••••	••••			••••	
Direct recycling	•	••••	• • • •	••••	• • • • •	••••	••••	••••	••••
						1			

Source: Harper, G., Sommerville, R., Kendrick, E. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5

30

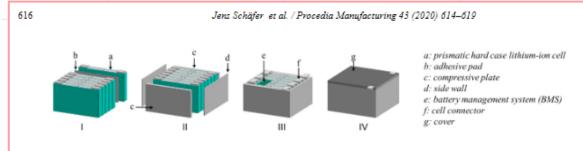
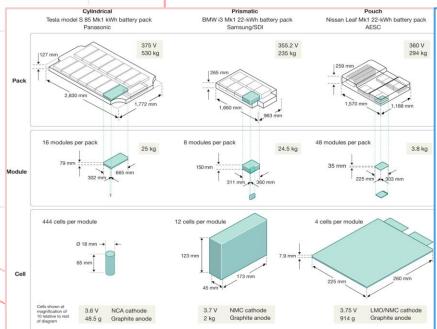



Fig. 2: Schematic representation of the production steps and parts for prismatic hard case lithium-ion battery modules

Jens Schäfer et al. / Procedia Manufacturing 43 (2020) 614-619

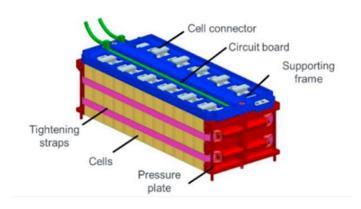
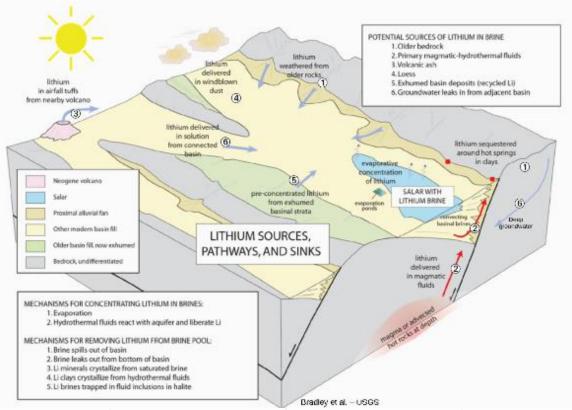
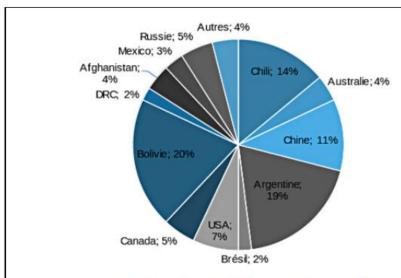


Fig. 3: Redesigned and remanufacturable battery module [8]

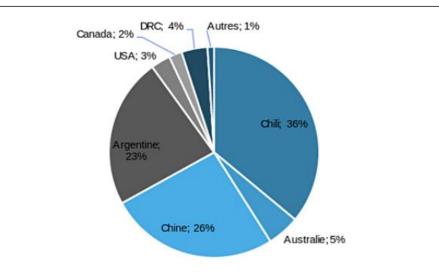
Merci!


Bibliographie


- Le lithium (Li): aspects géologiques, économiques et industriels, O.Dubourdieu, P.Thomas, 2019, :https://planet-terre.ens-lyon.fr/ressource/lithium-or-blanc.xml
- Le lithium, https://lelementarium.fr/element-fiche/lithium/
- Carte des réserves et productions mondiales : https://www.ifpenergiesnouvelles.fr/article/lithium-transition-energetique-au-dela-questiondes-ressources
- Kinetics and Mechanism of Lithium Extraction from α-Spodumene in Potassium Hydroxide Solution, Shengbo Qiu, Yue Zhu, Youfa Jiang, Chenglin Liu, and Jianguo Yu, Industrial & Engineering Chemistry Research, Res. 2022, 61, 15103-15113
- Photos des salars: Tom Hegen, https://www.tomhegen.com/collections/the-lithium-series-i
- Metals for clean energy: pathways to solving Europe's raw materials challenge, Policymaker summary, L. Gregoir, L. van Acker, Eurometaux, 2022,
 - https://www.eurometaux.eu/media/20ad5yza/2022-policymaker-summary-report-final.pdf
- Métaux "électrique": un avenir radieux pour les producteurs, un impératif de sécurisation pour les industriels , Cyclope, 2022, 9-20.

Bibliographie

- The role of critical minerals in Clean Energy transitions++D@+q`oonqs+1/10+176o+ gssor9..vvv-hd`-nqf.qdonqsr.sgd,qnkd,ne,bqhshb`k,lhmdq`kr,hm,bkd`m,dmdqfx,sq`mrhshnmr
- Le marché du lithium en 2020 : enjeux et paradoxes, AQFL+ 1/1/+ gssor9..vvv-lhmdq`khmen-eq.eq.dbnlhmd.l`qbgd,ct,khsghtl,1/1/,dmidtw,o`q`cnwdr
- K` l`sqhbd cd bqhshbhs lhrd intq ehm 1/1/ drs chronmhakd rtq L hmdq`khmen+1/1/+
 gssor9..vvv-lhmdq`khmen-eq.eq.`bst`khsd.`bst`khsd.l`sqhbd,cd,bqhshbhsd,lhrd,intq,ehm,1/1/,drs,
 chronmhakd,rtq,lhmdq`khmen
- gssor9..vvv-kdlnmcd-eq.ok`mdsd.`qshbkd.1/10.01.02.dm,rdqahd,tm,oqnids,cd,lhmd,cd,khsghtl, onqsd,o`q,qhn,shmsn,e`hs,e`bd,`,tmd,eqnmcd,hmdchsd^50/47//^2133-gslk
- gssor9..vvv-kdlnmcd-eq.dbnmnlhd.`qshbkd.1/11./0.11.`oqdr,cdr,rdl`hmdr,cd,l`mhedrs`shnmr,k`, rdqahd,lds,ehm,`t,oqnids,cd,lhmd,cd,khsghtl,cd,qhn,shmsn^500/421^2123-gslk
- gssor9. vvv-kdlnmcd-eq. hcddr. `qshbkd. 1/11./8. 18. k`,bntqrd, `t,khsghtl,kd,odsqnkd,ct,wwh,rhdbkd,drs,cdrnql`hr, `trrh,qtcd,ptd,fkna`kd^5032524^2121-gslk
- gssor9..vvv-dbnknfhd-fntu-eq.eq`mbd,1/2/,fntudqmdldms,cdunhkd,4,oqdlhdqr,k`tqd`sr,k`oodk,oqnidsr,lds`tw,bqhshptdr
- gsson.eq-rs`shrs`-bnl.hmenfq`oghd.17548.dunktshnm,ct,oqhw,ct,khsghtl,ds,bnmrnll`shnm, lnmch`kd."9)9sdws<B8drs\$1/dmuhqnm\$1/kd\$1/cntakd+k`\$1/snmmd\$1/dm\$1/c\$B2\$@8bdlaqd\$1/1/10(-


Modèle théorique de formation d'un gisement de lithium de type saumure

Source - © 2019 Adapté de données Deutsche Bank

Figure 2. Répartition géographique des ressources de lithium (total : 273 Mt Li)

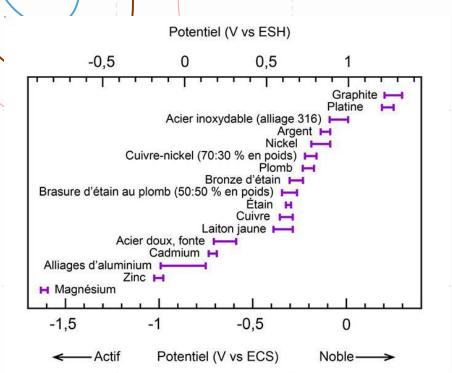
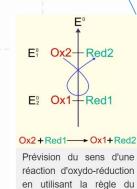
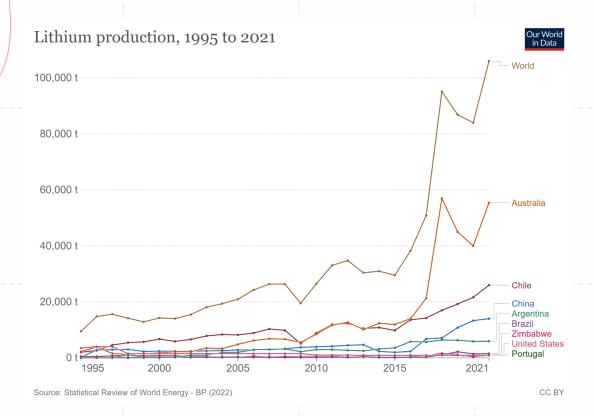
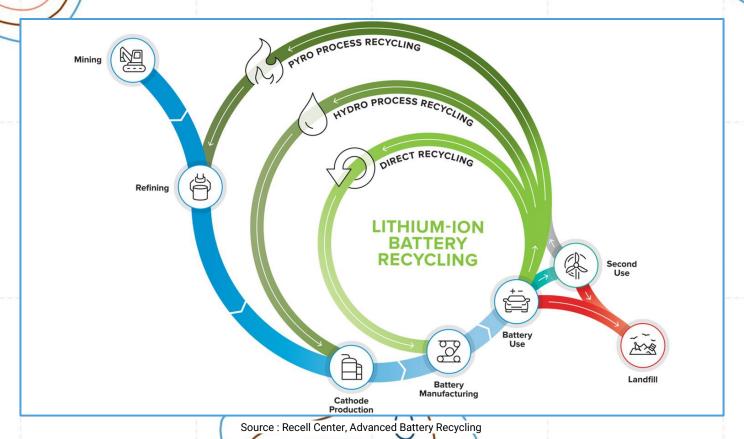

Source - © 2019 Adapté de données Deutsche Bank

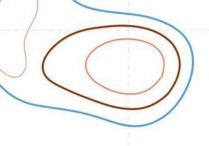
Figure 3. Répartition géographiques des réserves de lithium (total : 102 Mt Li)


Comparison rechargeable battery technologies

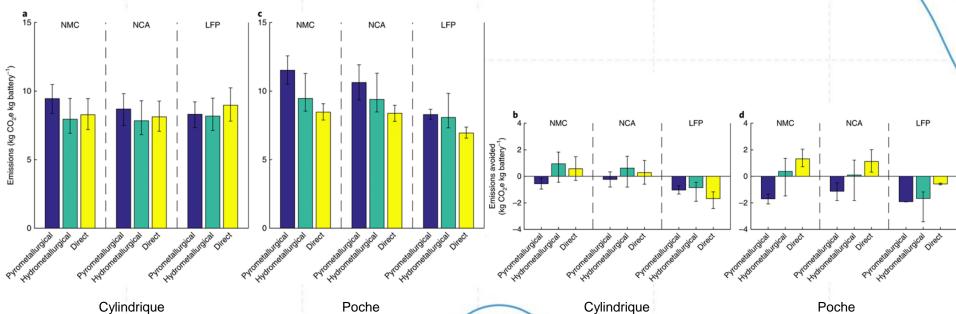
				Lithium Ion			
	Lead acid	Nickel Cadmium	Nickel Metal Hydride	Graphite/NMC	Titanate Oxide		
Energy Density	40 Wh/kg	45-60 Wh/kg	80 Wh/kg	120-200 Wh/kg	70-80 Wh/kg		
Cycles	200-300	1000-1500	300-500	500-3000	15000-20000		
Charge power	*	***	***	***	****		
Discharge power	****	****	****	****	****		
Energy efficiency	*	***	***	****	****		
Nominal cell voltage	2.0 V	1.2 V	1.2 V	3.6 V	2.3 V		


Leclanché developed and manufactures both Lithium Graphite/NMC and Lithium Titanate Oxide (LTO) technologies.


forme oxydée + n e ⁻ A _{Ox} + n e ⁻		forme réduite A _{Red}	E°/ V
Li + e-	=	Li _(s)	-3,04
K _(aq) + e	\rightleftharpoons	K _(s)	-2,92
Na _(aq) + e ⁻	\rightleftharpoons	Na _(s)	-2,71
Zn ²⁺ _(aq) + 2 e ⁻	\rightleftharpoons	$Zn_{(s)}$	-0,76
Pb ²⁺ _(aq) + 2 e ⁻	\rightleftharpoons	$Pb_{(s)}$	-0,13
2 H ⁺ _(aq) + 2 e ⁻	\rightleftharpoons	$H_{2(g)}$	0,00
$N_{2(g)} + 8 H_{(aq)}^+ + 6 e^{-}$	\rightleftharpoons	2 NH _{4(aq)}	+0,27
Cu ²⁺ _(aq) + 2 e ⁻	\rightleftharpoons	Cu _(s)	+0,34
I _{2(s)} + 2 e ⁻	\rightleftharpoons	2 I - (aq)	+0,54
$O_{2(aq)} + 2 H_{(aq)}^{+} + 2 e^{-}$	\rightleftharpoons	H ₂ O _{2(aq)}	+0,68
Fe $\frac{3+}{(aq)}$ + e ⁻	\rightleftharpoons	Fe ²⁺ (aq)	+0,77
$NO_{3(aq)}^{-} + 4 H_{(aq)}^{+} + 3 e^{-}$	\rightleftharpoons	$NO_{(g)} + 2 H_2O_{(l)}$	+0,96
$O_{2(g)} + 4 H_{(aq)}^+ + 4 e^-$	\rightleftharpoons	2 H ₂ O _(I)	+1,23
Cl _{2(g)} + 2 e ⁻	\rightleftharpoons	2 CI - (aq)	+1,36
Cr ₂ O _{7(aq)} + 14 H ⁺ _(aq) + 6 e ⁻	\rightleftharpoons	2 Cr 3+ + 7 H ₂ O _(I)	+1,36
$MnO_{4(aq)}^{-} + 8 H_{(aq)}^{+} + 5 e^{-}$	\rightleftharpoons	Mn ²⁺ (aq)	+1,49
$H_2O_{2(aq)} + 2 H_{(aq)}^+ + 2 e^-$	\rightleftharpoons	2 H ₂ O _(l)	+1,78
F _{2(g)} + 2 e ⁻	\rightleftharpoons	2 F - (aq)	+2,87



gamma



Une deuxième vie de la batterie?

Émissions et émissions évitées

Ciez, R.E., Whitacre, J.F. Examining different recycling processes for lithium-ion batteries. Nat Sustain 2, 148–156 (2019). https://doi.org/10.1038/s41893-019-0222-5

Annexes Clamping of Manual removal Is repeated that has to be replaced Close Start battery of tightening milling gripper module straps for each cell Pull old cell Remove old Insert new Push gripper Insert downwards cell upwards cell into placeholder (partially) completely (partially) gripper Push new cell Manual reassembly Unclamp battery Remove End completely in and of tightening straps placeholder module open gripper

Fig. 5: work flow chart of automated remanufacturing

/							
IB cathode chemistries		Ideal			• •		• F
Cathode types	LCO	LFP	LMO	NCA	NMC		
Chemical formula	LiCoO ₂	LiFePO ₄	LiMn ₂ O ₄	Li(Ni,Co,Al)O ₂	LiNi _{0.33} Mn _{0.33} Co _{0.33}	O ₂ (NMC111)	
					$\mathrm{LiNi_{0.5}Mn_{0.3}Co_{0.2}O_{2}}$	(NMC532)	
					$\mathbf{LiNi_{0.6}Mn_{0.2}Co_{0.2}O_{2}}$	(NMC622)	
					$\mathbf{LiNi_{0.8}Mn_{0.1}Co_{0.1}O_{2}}$	(NMC811)	
Structure	Layered	Olivine	Spinel	Layered	Layered		
					2000		
		= 2 0 2 =	+ + +				
		-	· · · · · · · · · · · · · · · · · · ·				
Year introduced	1991	1996	1996	1999	2008		
Safety	• •	•••••		10.00			
Energy density				****	••••		
Power density		0000		0000	0.00		
Calendar lifespan				0 0 0 0	0000		
Cycle lifespan	0 6 0	0.00		0000	0.00		
Performance	0000			0 0 0 0	0 0 0 0		
Cost	•			(0.00)			
Market share	Obsolete	Electric bikes, buses and large vehicles	Small	Steady	Growing (from NMC NMC 811 to no-cob		

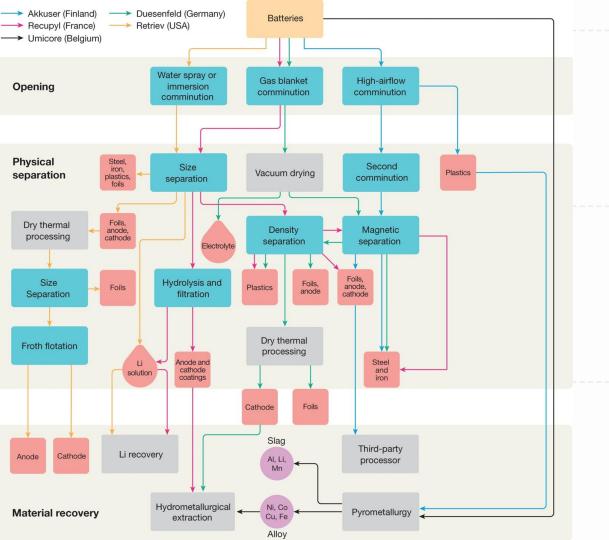


Fig. 5: Flow chart representing potential routes for the circular economy of LIBs, detailing seconduse applications, re-use, physical recovery, chemical recovery and biorecovery.

Harper, G., Sommerville, R., Kendrick, E. et al. Recycling lithium-ion batteries from electric vehicles. *Nature* 575, 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5